首页 教学课件 作业题库 作文库 word试卷 作业答疑 作业互助QQ群:428357256(小学)、450339958(初中)、429317065(高中)
1
习题题目 本题难度:0.70  题型:解答题

相似题

△ABC的三边a、b、c满足b=8-c,a2-bc-12a+52=0
(1)若b、c的值是一个一元二次方程的实解,写出这个一元二次方程.
(2)求出a、b、c的值,并指出△ABC的形状(按边分类).
查看答案
已知二次函数y=x2+bx+c的图象过点A(c,0),对称轴是x=2
(1)写出二次函数y=x2+bx+c的三条性质;
(2)求一元二次方程x2+bx+c=0的解.
查看答案
已知抛物线y=a(x-1)2+m的顶点为P,与x轴的两个交点分别为A、B,且△PAB为直角三角形.
(1)设抛物线的对称轴与x轴交于E点,那么PE与AB有何数量关系?请说明其理由;
(2)若将抛物线向上平移2单位时,抛物线的顶点恰好在x轴上,不解方程求关于x的一元二次方程a(x-1)2+m=0的根;
(3)试写出a与m之间的函数关系式,并指明m的取值范围.
查看答案
阅读并回答问题.
求一元二次方程ax2+bx+c=0(a≠0)的根(用配方法).
解:ax2+bx+c=0,
∵a≠0,∴x2+
b
a
x+
c
a
=0,第一步
移项得:x2+
b
a
x=-
c
a
,第二步
两边同时加上(
b
2a
2,得x2+
b
a
x+(  )2=-
c
a
+(
b
2a
2,第三步
整理得:(x+
b
2a
2=
b2-4ac
4a2
直接开方得x+
b
2a
b2-4ac
4a2
,第四步
∴x=
-b±
b2-4ac
2a

∴x1=
-b+
b2-4ac
2a
,x2=
-b-
b2-4ac
2a
,第五步
上述解题过程是否有错误?若有,说明在第几步,指明产生错误的原因,写出正确的过程;若没有,请说明上述解题过程所用的方法.
查看答案
(2016•盐城校级一模)请阅读下列材料:
问题:已知方程x2+x-1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.
解:设所求方程的根为y,则y=2x,所以x=
y
2

把x=
y
2
代入已知方程,得(
y
2
2+
y
2
-1=0.
化简,得y2+2y-4=0
故所求方程为y2+2y-4=0.
这种利用方程的代换求新方程的方法,我们称为“换根法”.
请用阅读材料提供的“换根法”求新方程(要求:把所求方程化为一般形式).
(1)已知方程x2+x-2=0,求一个一元二次方程,使它的根分别是已知方程根的相反数,则所求方程为:    
(2)已知方程2x2-7x+3=0,求一个一元二次方程,使它的根分别是已知方程根的倒数.
(3)已知关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根分别为3,-2,求一元二次方程cx2+bx+a=0的两根.(直接写出结果)
查看答案
2
解析与答案 (揭秘难题真相,上学库宝

习题“写出求一元二次方程ax2+bx+c=0的根的算法.”的学库宝(http://www.xuekubao.com/)教师分析与解答如下所示:

解析
【分析】若判别式△>0则原方程有两个不相等的实数根若△=0则原方程有两个相等的实数根若△<0则原方程无实数根在解方程之前应先判断判别式的符号再执行不同的步骤.
答案
【解答】解:求一元二次方程ax2+bx+c=0的根的算法步骤是第一步输入3个系数abc第二步计算△=b2-4ac第三步判断△≥0是否成立若是则计算p=-b2aq=△2a否则输出“方程没有实数根”结束算法第四步判断△=0是否成立若是则输出x1=x2=p否则计算x1=p+qx2=p-q并输出x1x2.
知识点
【考点】算法的概念.
验证码:   (  刷新)

微信扫一扫
手机看答案

3
知识点讲解

经过分析,习题“写出求一元二次方程ax2+bx+c=0的根的算法.”主要考察你对 算法的概念算法与框图 等考点的理解。

因为篇幅有限,只列出部分考点,详细请访问学库宝

算法的概念

描述:

算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。

在数学和计算机科学之中,算法(Algorithm)为一个计算的具体步骤,常用于计算、数据处理和自动推理。精确而言,算法是一个表示为有限长列表的有效方法。算法应包含清晰定义的指令用于计算函数 。