1
习题题目
代数基本定理告诉我们对于形如xn+a1xn-1+a2xn-2+…+an-1x+an=0(其中a1,a2,…an为整数)这样的方程,如果有整数根的话,那么整数根必定是an的约数.例如方程x3+8x2-11x+2=0的整数根只可能为±1,±2代入检验得x=1时等式成立.故x3+8x2-11x+2含有因式x-1,所以原方程可转化为:(x-1)(x2+9x-2)=0,进而可求得方程的所有解.根据以上阅读材料请你解方程:x3+x2-11x-3=0.
【考点】因式分解的意义.
2
解析与答案 (揭秘难题真相,上学库宝
验证码:   (  刷新)

微信扫一扫
手机看答案

相似题

代数基本定理告诉我们对于形如xn+a1xn-1+a2xn-2+…+an-1x+an=0(其中a1,a2,…an为整数)这样的方程,如果有整数根的话,那么整数根必定是an的约数.例如方程x3+8x2-11x+2=0的整数根只可能为±1,±2代入检验得x=1时等式成立.故x3+8x2-11x+2含有因式x-1,所以原方程可转化为:(x-1)(x2+9x-2)=0,进而可求得方程的所有解.根据以上阅读材料请你解方程:x3+x2-11x-3=0.
查看答案
3
知识点讲解

经过分析,习题“代数基本定理告诉我们对于形如xn+a1xn-1+a2xn-2”主要考察你对 因式分解的意义 等考点的理解。

因为篇幅有限,只列出部分考点,详细请访问学库宝

因式分解的意义

描述:

因式分解的意义:意义:它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具。因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。学习它,既可以复习整式的四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、思维发展性、运算能力,又可以提高学生综合分析和解决问题的能力。